习美教育网习美教育网

习美留学_托福雅思保分报名_gre机经_名校保录_GMAT

T1GRE-T1GRE与SE(2023/更新)

请问TP-Link的路由器如何设置允许路由封装(GRE)呢 0 0

TP-Link的路由器配置GRE隧道是一个简单的工作T1GRE,只需要输入几行命令即可实现。

路由器A:

interface Ethernet0/1

ip address 10.2.2.1 255.255.255.0

interface Serial0/0

ip address 192.168.4.1 255.255.255.0

interface Tunnel0

ip address 1.1.1.2 255.255.255.0

tunnel source Serial0/0

tunnel destination 192.168.4.2

路由器B:

interface FastEthernet0/1

ip address 10.1.1.1 255.255.255.0

interface Serial0/0

ip address 192.168.4.2 255.255.255.0

interface Tunnel0

ip address 1.1.1.1 255.255.255.0

tunnel source Serial0/0

tunnel destination 192.168.4.1

另外注意下路由配置情况T1GRE

而tunnel source和tunnel destination地址是Internet上可以路由的IP地址,用于建立tunnel。例如,本端路由器地址规划为:

eth0:10.1.1.1/24 (连接内部局域网)

tunnel0:10.2.1.1/30(tunnel source:202.38.160.1T1GRE;tunnel destination:192.15.135.80)

serial0:202.38.160.1/24(连接Internet)

ip route 10.3.1.0 255.255.255.0 10.2.1.2(到对端以太网的路由)

对端路由器地址规划为:

eth0:10.3.1.1/24(连接内部局域网)

tunnel0:10.2.1.2/30(tunnel source:192.15.135.80;tunnel destination:202.38.160.1)

serial0:192.15.135.80/24(连接Internet)

ip route 10.1.1.0 255.255.255.0 10.2.1.1(到对端以太网的路由)

在这个例子中,两个路由器均拥有虚拟接口,即隧道接口。这一接口属于各自的网络,就好像一个点到点的T1环路。跨越隧道网络的数据采用串行网络方式传输。

对于每个路由器都有两种途径将数据传递到另一端,即通过串行接口以及通过隧道接口(通过隧道传递数据)。该隧道可以传输非路由协议的数据,如NetBIOS或AppleTalk。如果数据需要通过互联网,T1GRE你可以使用IPSec对其进行加密。

从下面的信息反馈可以看出,路由器B上的隧道接口和其T1GRE他网络接口没有什么不同:

RouterB# sh ip int brie

Interface IP-Address OK? Method Status Protocol

Ethernet0 10.1.1.1 YES manual up down

Serial0 192.168.4.2 YES manual up up

Serial1 unassigned YES unset administratively down down

Tunnel0 1.1.1.1 YES manual up up

RouterB#

解决GRE隧道的问题

由于GRE是将一个数据包封装到另一个数据包中,因此你可能会遇到GRE的数据报大于网络接口所设定的数据包最大尺寸的情况。接近这种问题的方法是在隧道接口上配置ip tcp adjust-mss 1436。

另外,虽然GRE并不支持加密,但是你可以通过tunnel key命令在隧道的两头各设置一个密钥。这个密钥其实就是一个明文的密码。

由于GRE隧道没有状态控制,可能隧道的一端已经关闭,而另一端仍然开启。这一问题的解决方案就是在隧道两端开启 keepalive数据包。它可以让隧道一端定时向另一端发送keepalive数据,确认端口保持开启状态。如果隧道的某一端没有按时收到 keepalive数据,那么这一侧的隧道端口也会关闭。

医学影像学里密度分辨力和空间分辨力的区别和联系

一、区别

1、分辨率不同

(1)密度分辨率表示的是影像中能显示的最小密度差别。

(2)CT的密度分辨率受噪声和显示物的大小所制约,噪声越小和显示物越大,密度分辨率越佳。CT图像的密度分辨率比X线照片高得多。

2、表示形式不同

密度分辨率能够区分开的密度差别程度以%表示。计算机体层摄影性能和说明图像质量的指标之一,如果计算机体层摄影的密度分辨率为0.5%,则表示两种物质的密度差别等于或大于0.5%时即可辨别出来,密度差别小于0.5%时,由于受噪声的干扰,就无法辨别。

二、联系

空间分辨力在CT设备中有时又称作几何分辨力或高对比度分辨力,它是指在高对比度的情况下鉴别细微结构的能力,也即显示最小体积病灶或结构的能力。在评价CT图像质量的时候,经常首先考虑空间分辨力。

CT图像由于检测器有一定大小,取样有一定距离,所以空间分辨力由X线管焦点的几何尺寸决定,而基本与X射线剂量大小无关。在X线剂量一定的情况下,空间分辨力与密度分辨力存在一定的制约关系,不可能同时改善空间分辨力与对比度分辨力。

扩展材料:

医学影像学:X线、CT、MRI 成象技术与临床应用 

一、图像存档与传输系统(PACS)是保存和传输图像的设备与软件系统,优点为:

1、保存了图像信息,便于日后再处理;

2、远离放射科的医生可随时调阅图像读片与诊断,提高了工作效率;

3、便于图像传递和交流,可开展复合影像诊断、多学科会诊;

4、可避免胶片在传递过程中丢失和出错,成为医院现代化的管理手段;

5、节约胶片开支、管理费用,减少存放空间,从而进入无胶片时代。 

二、数字减影血管造影(DSA)通过计算器处理数字影像信息,常用时间减影法,消除骨骼和软组织影像,使血管清晰显影的成象技术。 

脑血管造影是将有机碘对比剂引入脑血管显示脑血管的方法,包括颈动脉造影和椎动脉造影。常用DSA技术,分别摄取脑动脉期、静脉期和静脉窦期图像。 

X线成像–电磁波,波长0.0006~50nm 

三、X线成象原理与穿透性、荧光效应和感光效应,及人体组织结构密度和厚度的差别有关,与成像有关的特性:

1、穿透性X线成象的基础。电压愈高,穿透力愈强; 

2、荧光效应透视检查的基础。X线激发硫化锌镉、钨酸钙等发出荧光;

3、感光效应X线摄影的基础。溴化银中的银离子被还原成金属银,沉淀于胶片的胶膜内;

4、电离效应放射治疗的基础。X线射入人体,引起生物学方面的改变,即生物效应。 

四、X线图像特点:

1、灰阶图像;

2、重叠图像;

3、放大图像;

4、可有失真。 

五、灰阶影像是以光学密度反应人体组织结构的解剖及病理状态。图像上的白影与黑影除与厚度有关外,主要反映组织密度高低(密度高呈白影,密度低呈黑影)。

六、荧光透视

1、优点:可转动患者体位;了解器官动态变化;操作方面,费用低;

2、缺点:对比度和清晰度差;缺乏客观纪录。 

七、X线摄影

1、优点:对比度和清晰度佳;

2、缺点:无立体概念;无法观察功能。 五造影检查将对比剂引入体内产生人工对比,常用对比剂: 

八、高密度对比剂

1、钡剂:医用硫酸钡;

2、碘剂:无机(碘化油、碘苯酯)、有机(离子型如泛影葡胺;非离子型如碘必乐、优维显)。 

离子型对比剂具高渗性,毒副作用大;非离子型低渗性、低年度、低毒性。

九、低密度对比剂空气、O2、CO2 

十、造影方式

1、间接引入:IVP;

2、直接引入:口服、灌注、穿刺注入。 五临床应用胃肠道、骨骼系统和胸部多选用。 

十一、CT成像–用X线束对人体某一层面照射,测定透过的X线量,数字化后经计算机得出该层面组织各个单位容积的吸收系数,再重建图像。 

1、CT图像特点

(1)优点:密度分辨力高、量化的说明密度高低程度的量值(CT值)。

(2)空间分辨力不如X线图像。

(3)需要多个连续的层面图像。 

2、人体组织CT值

(1)水:0 HU;

(2)空气:–1000 HU;

(3)脂肪:–90~–70 HU;

(4)软组织;20~50 HU;

(5)骨:+1000 HU。 

3、临床应用

(1)中枢神经系统疾病:颅内肿瘤、脓肿与肉芽肿、寄生虫病、外伤性血肿与脑损伤、缺血性脑梗死与脑出血。

(2)框内占位性病变、鼻窦癌、鼻咽癌等。

(3)肺癌和纵隔肿瘤。

(4)肝、胆、胰、脾、腹腔及腹膜后间隙及肾上腺及泌尿生殖系统。

(5)胃肠病变向腔外侵犯或远处转移。 

十二、MRI成像–磁共振信号有T-1、T2、和质子密度等参数,由这些参数构成MRI图像。 

T-1-终止射频脉冲,则纵向磁化逐渐恢复到原状,此过程为纵向弛豫,恢复所需时间为纵向弛豫时间,简称T-1。以T1参数构成的图像为T1加权像(T-1-WI)。 

T2横向磁化也很快消失,此过程为横向弛豫,所需时间为横向弛豫时间,简称T-2。以T2参数构成的图像为T2加权像(T2-WI)。 

1、MR信号的产生在弛豫过程中,质子吸收RF脉冲组合的能量释放产生MR信号。通过调节成象参数TR和TE,及可分别获取主要反映T1、T2及PDWI对比的MR信号,由此产生T-1-WI、T2-WI或PDWI图像。

(1)T-1-WI上呈高信号亚急性血肿、脂肪、蛋白含量高、黑色素; 

(2)T-2WI上呈低信号钙质、空气、流空、脂肪及蛋白质含量少的。 

2、MRI图像特点

(1)多参数灰阶图像;

(2)多方位断层图象;

(3)流空效应:流动的液体,在成象过程中采集不到信号而呈无信号黑影;

(4)MRI对比增强效应:顺磁性物质作为对比剂可缩短周围质子的弛豫时间,称质子弛豫增强效应;

(5)伪色彩的功能图像。 

3、MRI检查技术

(1)序列技术;

(2)自回旋波(SE)序列;

(3)梯度回波(GRE)序列;

(4)反转恢复(IR)序列;

(5)平面回波成象(EPI)。 

4、MR水成象技术用很长TR和很长TE可获得重T2-WI,使静态或缓慢流动液体呈高信号,背景的其它组织呈低信号而形成良好对比。

经重组可使含液体器官或间隙呈高信号,获得犹如造影效果的图像,即MR水成象,包括MRCP、MRU、MRM等。  

5、临床应用

(1)脑与脊髓疾病;

(2)肺门与纵隔淋巴结;

(3)心脏大血管内腔;

(4)诊断乳腺癌;

(5)清晰显示软骨、关节囊等结构。 

6、各系统检查首选仪器

(1)骨骼平片首选,进一步CT;

(2)关节MRI; 

(3)呼吸系统平片首选,进一步CT;

(4)急腹症平片首选,进一步CT;

(5)腹部闭合性损伤超声、CT;

(6)食管病变钡餐造影; 

(7)胃、十二指肠超声、气钡双重对比造影;

(8)肝超声和C T首选,进一步MRI,也可做肝动脉造影;

(9)胰腺超声、CT。

参考资料:百度百科-医学影像学

医学核磁共振报告中的数值有什么意义?比如T1,T2,还有MRI的数值。数值的高低代表什么?

T1、T2的意义是用来判断是否病变的一个参数,因为病变组织的T1、T2值与正常组织的值不同。

MRI就是核磁共振,数值是它的强度,越大的机器越好越贵。

T1加权像、T2加权像为磁共振检查中报告中常提到的术语。

与核自旋有关,T1是纵向弛豫,T2是横向弛豫。

核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。

扩展资料

基本原理

原子核的自旋

核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可 以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系。

I值为零的原子核可以看做是一种非自旋的球体,I为1/2的原子核可以看做是一种电荷分 布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋 球体。I大于1/2的原子核可以看做是一种电荷分布不均匀的自旋椭球体。

核磁共振现象

原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。

μ=γP

式中,P是角动量矩,γ是磁旋比,它是自旋核的磁矩和角动量矩之间的比值,因此是各种核的特征常数。

当自旋核(spin nuclear)处于磁感应强度为B0的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相像,称为拉莫尔进动(larmor process)。自旋核进动的角速度ω0与外磁场感应强度B0成正比,比例常数即为磁旋比(magnetogyric ratio)γ。式中ν0是进动频率。

ω0=2πν0=γB0

原子核在无外磁场中的运动情况如下图,微观磁矩在外磁场中的取向是量子化的(方向量子化),自旋量子数为I的原子核在外磁场作用下只可能有2I+ l个取向,每一个取向都可以 用一个自旋磁盘子数m来表示,m与I之间的关系是

m=I,I-1,I-2…-I

原子核的每一种取向都代表了核在该磁场中的一种能量状态,I值为1/2的核在外磁场作用下只有两种取向,各相当于m=1/2 和m=-1/2,这两种状态之间的能量差ΔE值为

ΔE=γhB0/2π

一个核要从低能态跃迁到高能态,必须吸收ΔE的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核 吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振。当频率为ν射的射频照射自旋体系时,由于该射频的能量E射=hν射,因此核磁共振要求的条件为

hν射=ΔE(即2πν射=ω射=γB0) ①

目前研究得最多的是1H的核磁共振和13C的核磁共振。1H的核磁共振称为质子磁共振 (Proton Magnetic Resonance),简称 PMR,也表示为1H-NMR。13C核磁共振(Carbon- 13 Nuclear Magnetic Resonance)简称 CMR,也表示为13C-NMR。

核磁共振饱和与驰豫

1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。1H的两种取向代表了两种不同的能级,在磁场中,m=1/2时,E=-μB0,能量较低,m=-1/2时,E=μB0,能量较高,两者的能量差为ΔE=2μB0。

式①,式②说明:处于低能级的1H核吸收E射的能量时就能跃迁到高能级。也即只有当电磁波的辐射能等于lH的能级差时,才能发生1H的核磁共振。

E射=hν射=ΔE=hν0 ②因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,既符合下式。

ν射=ν0=γB0/2π ③由式③可知:要使ν射=ν0,可以采用两种方法。一种是应强度,逐渐改变电磁波的辐射频率ν射,进行扫描,当ν射与B0匹配时,发生核磁共振。

参考资料:百度百科-核磁共振

美国大学硕士申请一定需要gre吗

首先,GRE从来没有作为美国研究生入学考试必须要求,但绝大部分需要GRE专项成绩作为“推荐成绩”,尤其是有些美国名牌大学;其次,其他考试也可作为美国研究生入学考试成绩,比如,法律与商业需要考LSAT【LSAT是Law School Admission Test(法学院入学考试)的缩写】或GMAT【GMAT是Graduate Management Admission Test的缩写,中文名称为经企管理研究生入学考试】而不是GRE普通考试。

GRE,全称Graduate Record Examination,中文名称为美国研究生入学考试,适用于除法律与商业外的各专业,由美国教育考试服务处(Educational Testing Service,简称ETS)主办。

GRE是世界各地的大学各类研究生院(除管理类学院,法学院)要求申请者所必须具备的一个考试成绩,也是教授对申请者是否授予奖学金所依据的最重要的标准。GRE,首次由美国哈佛,耶鲁,哥伦比亚,普林斯顿四所大学联合举办,初期由卡耐基基金会(CarnegieFoundation)承办,1948年交由新成立的教育测试中心ETS负责。之后每年在世界许多地方举行。

中国国外考试协调处负责中国归口管理和承办GRE等国外考试。有些美国名牌大学把GRE专项成绩作为“推荐成绩”:即希望申请人能够提供此项成绩,无论本科专业是否与其申请研究生专业相同,但不把它作为必须要求。这时若能提供专项GRE成绩是很有利于申请奖学金资助的。因此,如果申请人有较为充足的时间,不妨参加专项考试,一个优秀的专项GRE成绩很能反映申请人的专业素质与学习潜力。GRE普通考试是申请研究生入学的必要考试,申请法律或商业学研究生以LSAT或GMAT替代GRE普通考试。目前美国大学在成绩替代上比以往要求松些。许多学校是可以提供GRE普通考试或GMAT考试成绩的任何一种作为商业类研究生应提供的成绩,法律研究生亦有以GRE普通考试成绩替代LSAT成绩的。

入学申请有什么条件,可以使用留学志愿参考系统,看系统中有多少与你情况相似的学生成功申请了这个学校或者那些专业,看看他们最低多少分就可以被录取,就可以知道申请的成绩要求了。

联系我们请扫一扫上面二维码

相关文章